Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects?
نویسندگان
چکیده
Cannabis is under clinical investigation to assess its potential for medicinal use, but the question arises as to whether there is any advantage in using cannabis extracts compared with isolated Delta9-trans-tetrahydrocannabinol (Delta9THC), the major psychoactive component. We have compared the effect of a standardized cannabis extract (SCE) with pure Delta9THC, at matched concentrations of Delta9THC, and also with a Delta9THC-free extract (Delta9THC-free SCE), using two cannabinoid-sensitive models, a mouse model of multiple sclerosis (MS), and an in-vitro rat brain slice model of epilepsy. Whilst SCE inhibited spasticity in the mouse model of MS to a comparable level, it caused a more rapid onset of muscle relaxation, and a reduction in the time to maximum effect compared with Delta9THC alone. The Delta9THC-free extract or cannabidiol (CBD) caused no inhibition of spasticity. However, in the in-vitro epilepsy model, in which sustained epileptiform seizures were induced by the muscarinic receptor agonist oxotremorine-M in immature rat piriform cortical brain slices, SCE was a more potent and again more rapidly-acting anticonvulsant than isolated Delta9THC, but in this model, the Delta9THC-free extract also exhibited anticonvulsant activity. Cannabidiol did not inhibit seizures, nor did it modulate the activity of Delta9THC in this model. Therefore, as far as some actions of cannabis were concerned (e.g. antispasticity), Delta9THC was the active constituent, which might be modified by the presence of other components. However, for other effects (e.g. anticonvulsant properties) Delta9THC, although active, might not be necessary for the observed effect. Above all, these results demonstrated that not all of the therapeutic actions of cannabis herb might be due to the Delta9THC content.
منابع مشابه
Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice.
Delta9-Tetrahydrocannabinol (Delta9-THC), the major psychoactive ingredient in preparations of Cannabis sativa (marijuana, hashish), elicits central nervous system (CNS) responses, including cognitive alterations and euphoria. These responses account for the abuse potential of cannabis, while other effects such as analgesia suggest potential medicinal applications. To study the role of the majo...
متن کاملMedicinal chemistry endeavors around the phytocannabinoids.
Over the past 50 years, a considerable research in medicinal chemistry has been carried out around the natural constituents of Cannabis sativa L. Following the identification of Delta9-tetrahydrocannabinol (Delta9-THC) in 1964, critical chemical modifications, e.g., variation of the side chain at C3 and the opening of the tricyclic scaffold, have led to the characterization of potent and cannab...
متن کاملDelat9-tetrahydrocannabinol content in cannabis plants of greek origin.
The delta9-tetrahydrocannabinol (delta9-THC) content was identified and determined quantitatively using a Gas Chromatography Detector (Gas Chromatography-Electron Ion Detector) instrument in samples of illicit herbal cannabis. Law enforcement authorities sent the samples to the Department of Forensic Medicine and Toxicology, University of Athens, for toxicological analysis. The concentrations o...
متن کاملA novel component of cannabis extract potentiates excitatory synaptic transmission in rat olfactory cortex in vitro.
Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta9-tetrahydrocannabinol (Delta9-THC), and even Delta9-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. T...
متن کاملModulation of mediotemporal and ventrostriatal function in humans by Delta9-tetrahydrocannabinol: a neural basis for the effects of Cannabis sativa on learning and psychosis.
CONTEXT Cannabis sativa use can impair verbal learning, provoke acute psychosis, and increase the risk of schizophrenia. It is unclear where C. sativa acts in the human brain to modulate verbal learning and to induce psychotic symptoms. OBJECTIVES To investigate the effects of 2 main psychoactive constituents of C. sativa, Delta9-tetrahydrocannabinol (Delta9-THC) and cannabidiol, on regional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacy and pharmacology
دوره 55 12 شماره
صفحات -
تاریخ انتشار 2003